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A new modified Weibull distribution function 
for the evaluation of the strength of silicon 
carbide and alumina fibres 

K. K. PHANI  
Central Glass and Ceramic Research Institute, Calcutta 700032, India 

The strength distributions of silicon carbide and alumina fibres have been evaluated using a 
modified Weibull distribution function. The function provides an upper and lower strength 
limit and is characterized by two shape and location parameters. The sum of squares was used 
as a measure of fit between the distribution function and the data. The result showed good 
agreement between the two. In addition, the strength distribution and the average value at a 
different gauge length were extrapolated from the parameters estimated at the original gauge 
length. In this case also, the proposed function accurately predicted the data points. 

1. Introduction 
The advanced ceramic fibres such as boron, carbon, 
silicon carbide and alumina are characterized by a 
variable strength which is usually attributed to the 
pre-existing flaws of variable sizes in these materials. 
The statistical distribution nature of these flaws also 
increases the probability of encountering a more 
severe flaw with an increase in length, with the con- 
sequent reduction in fracture strength in long lengths. 
Statistically, the analysis of strength is carried out in 
terms of the "weakest-link theory" which is based on 
the theory that the fracture is controlled by the 
weakest defect present in a fibre. The form of weakest- 
link theory most frequently applied to reinforcing 
fibres such as silicon carbide, alumina is that due to 
Weibull [1]. However, as demanded by the theory, the 
strength distribution usually does not yield a straight 
line on a Weibull probability graph [2-6]. Also, as 
opposed to the prediction of the theory, the log 
strength against log length plot shows a change in 
slope at short fibre lengths [2, 4]. As an alternative 
approach, a multi-modal Weibull distribution func- 
tion [2] is usually used for the analysis of the strength 
distribution of ceramic fibres, from the viewpoint that 
the distribution is controlled by more than one type of 
flaw population arising out of "surface" or "volume" 
defects. The same approach has been used by Goda 
and Fukunaga [2] to analyse the strength of two 
types of advanced metal-reinforcing fibres i.e. silicon 
carbide and alumina. For silicon carbide fibres they 
identified two types of defects as "flaw" or "pit"  
type surface defects and "void" type volume defects. In. 
addition there were undetectable defects which were 
assigned to the surface. Although the analysis of the 
strength distribution was carried out assuming these 
two modes, both the modes contained strength values 
arising out of failures due to volume or surface defects. 

In this paper, statistical justification for such an 
analysis has been analysed and a modification to the 
Weibull distribution function has been suggested for 
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the analysis of fibre strength data. The strength distri- 
butions of silicon carbide and alumina fibres have also 
been analysed in terms of the proposed distribution 
function. 

2. Analytical procedure 
2.1. Flaw distribution function 
Statistically, for random and independent distributions 
of flaws the failure probability P, of a fibre of length 
L, having a strength less than S, is given by [7] 

P(S )  = 1 - exp [ -LN(S) ]  (1) 

where N ( S )  is the L N ( S )  is the failure probability of 
one flaw at strength less than S. Weibull [1] assumed 
a reasonable form for the cumulative flaw distribution 
function as 

N ( S )  = (S/SO) m (2) 

where So is a scaling parameter and m is a shape 
parameter. Equations 1 and 2 give 

P ( S )  = 1 - exp [ - L ( S / S O )  ~] (3) 

or  

ln{( l /L)  ln[1/(1 - P)]} = m l n S -  m l n S 0  

Equation 3 shows that for a flaw distribution charac- 
terized by a two-parameter Weibull distribution a plot 
of ln  {(l/L) In [1/(1 - P)]} against In S will be linear 
with slope m. However, from the lack of linearity of 
such plots for extensive data reported in the literature 
[2-4] it has been concluded [5] that the single Weibull 
distribution is inconsistent with experimental data. 
As an alternative approach, a multimodal Weibull 
distribution based on the multi-risk model [8] is 
usually used for the analysis of strength data. For a 
bimodal distribution the function is given by [9-1 I] 

P(S )  = 1 - [1 - P,(S)][1 - P2(S)] 

= 1 - exp [--(SISO,) m' - (S/SO2) ~1 (4) 

where P I ( S )  and P2(S) are the strength distribution 
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functions of the defect subpopulation number 1 
and 2 respectively. Each of them is described as a 
single Weibull distribution. It may be mentioned that 
Olshansky and Maurer [7] have pointed out that a 
flaw distribution in which the slope of In {(I/L) In 
[1/(1 - P)]} decreases with In S cannot be interpreted 
in terms of two Weibull flaw distributions unless it is 
assumed that neither distribution extends over the 
entire experimental range of stresses. Snowden [12] 
has analysed the statistical justification for using 
a bimodal Weibull distribution by calculating the 
standardized coefficients of skewness and kurtosis of 
various bimodal strength data of optical glass fibres 
and concluded that the beta distribution, rather than 
the bimodal Weibull distribution describes the data 
best. As an example, an analysis of bimodal strength 
data, reported by Goda and Fukunaga [2], for coreless 
silicon carbide fibres (Nicalon, produced by Nippon 
Carbon Co. Ltd.) tested at a gauge length of 10 mm is 
shown in Fig. 1. The values of the standardized coef- 
ficients of skewness square and kurtosis, as calculated 
from the various moments of this distribution are 
obtained are 0.038 and 2.53 respectively. Analysis 
of the data in terms of the Pearson system [13] of 
a probability-density function yields the beta distri- 
bution, which is also shown in Fig. 1. 

The beta distribution is characterized by two shape 
parameters with the value of the variate being limited 
to a finite interval. This is more realistic for brittle 
materials like silicon carbide or alumina fibres, with a 
lower bound of zero being reasonable and an upper 
bound equal to the theoretical maximum strength 

E/IO [14], where E is the tensile modulus of fibres. 
On the other hand, the Weibull distributions given by 
Equations 3 and 4, require S = oo for certainty of 
failure (P = 1), which is a physically unsatisfactory 
boundary condition. 

To overcome this limitation Kies [15] proposed a 

modification of the Weibull distribution in the form 

N(S) --- [(S - SL)/(S U - -  S)] m~ (5) 

where SL and Su are the lower and upper limiting 
strengths respectively and m0 is defined as the damage 
coefficient. However, it has been shown [16] that even 
this modified form is not applicable to the entire 
strength data of brittle materials. 

Functionally Equation 5 is similar in form to one 
obtained from the beta distribution, except it has only 
one shape parameter. Thus a further modification of 
Equation 5 is suggested in the form 

N(S) = [ ( S -  S L ) / S o l ]  ml [S U - 3 ) / 3 o 2 1  m2 (6) 

where S0j, S02 and ml, m2 are the two scaling par- 
ameters and shape parameters respectively. Equation 6 
along with Equation 1 gives 

In {(l /L)In [1/(l - P(S)]} 

= m, In [(S - SL)/So,] -- m2 In [(Su - S)/Soz] 

(7) 

2.2. G o o d n e s s  of fit 
In order to compare strength data with the distri- 
bution function, some measure of goodness of fit is 
needed. In this study, the sum of squares is used as a 
measure of the goodness of fit between the function 
and data. The sum of squares is given by 

Q = 1 -  ~, ( S i -  ~ i ) 2 / ~  (S i - -  ~.~)2 (8) 
i=1 / i=1 

where Si is the value of failure stress calculated for 
the appropriate P value from the ranking of failure 
strengths and the calculated parameters of the distri- 
bution function; Si is the measured strength values and 
~q is the mean of the distribution. The Si values corre- 
sponding to different values of P are obtained from 
Equation 7 by using Newton-Raphson's method. For 
a perfect fit Q = 1, in general Q > 0.95 indicates a 
good fit. 

2.3. Predic t ion of s t rength  d is t r ibu t ion  and 
the mean value at d i f ferent  gauge 
lengths  

The strength distribution at different gauge lengths 
can be predicted from Equations 1 and 6, once the 
parameters of Equation 6 have been evaluated by 
fitting Equation 7 to data at one gauge length. 

An average strength S at gauge length L can be 
calculated using Equations 1 and 6 as 

= SL + f~su exp { - L  [(S - SL)/SoI]ml/ 

[(X U --  S) /So2] m2 } d X  ( 9 )  

The strength at different gauge lengths can be obtained 
from Equation 9 by numerical integration of the right- 
hand side integral. 

3. D a t a  ana lys is  and d iscuss ion  
In order to evaluate the applicability of the proposed 
distribution function the strength data of coreless 
silicon Garbide fibres (Nicalon, produced by Nippon 
Carbon Co. Ltd.) and alumina fibres (Fibre FP, 
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Figure 2 Weibull plot for SiC fibres and the cumulative distribution 
curve estimated from Equation 6. (o surface defect, �9 volume 
defect) Gauge length = 10mm. 

produced by Du Pont), reported by Goda et al. [2] 
and Nunes [17] respectively, have been analysed. 
Goda et al. [2] tested the fibres using gauge lengths of 
10 mm and 254 mm (10 in) respectively. In addition, 
primary fracture surfaces of the fibres were observed 
by a scanning electron microscope to identify the type 
of flaw responsible for failure. For silicon carbide 
(SIC) fibres two main types of defects were identified 
as "flaw" of "pit" type surface defects and "void" 
type volume defects. In additon there were undetected 
defects which were assigned to surface. Goda et al. [2] 
also experimented with alumina (A1203) fibres to iden- 
tify the kind of fracture mode. However, from the 
granular appearance of fractured surfaces it was not 
possible to identify the defect. They attributed two 
kinds of fracture mode of A1203 fibres to "crooked" 
and "uncrooked" fibre and concluded that Nune's 
[17] data shows similar tendency. 

Fig. 2 shows Weibull plots for the tensile strength 
of SiC fibres. Since Equation 7 is not linear in their 
parameters, an interactive least square method used 
for finding the parameters using the minimum total 
variance as the criteria. Initial estimates of Su and SL 
were made from the fitted beta distribution. A set of 
values were assumed for So, and S02 and the values of 
the parameters rn, and m2 were evaluated from the 
data by regression analysis. From the calculated and 
experimentalvalues ofln {(l/L) x in [1/(1 - P(S)]}, 
a least squares sum was evaluated for the set of par- 
ameters S0, and S02. The process was repeated by 
changing the values of SL and Su until the minimum 
least squares sum was found. It may be noted that the 
numerator of the second term on the right-hand side 
of Equation 8 gives the least squares sum. Since for a 
given set of data the quantity (Si - ~)2 is fixed, the 
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minimum least square sum will automatically ensure 
the maximum value of Q. A similar analysis was also 
carried out for A120 3 fibres. The data points for this 
fibre are plotted in Fig. 3. The values of parameters 
obtained for both the group of fibres are given in 
Table I along with the Q values calculated from 
Equation 8. The fitted equations are shown as full 
lines in the respective figures; in both the proposed 
equation provides excellent agreement with the data. 
This is further supported by the Q values of 0.99 and 
0.97 obtained for SiC and A1203 fibres respectively. 
The corresponding values for the bimodal Weibull 
distribution are estimated to be 0.98 and 0.94 from the 
parameters given by Goda et al. [2], indicating that the 
proposed distribution describes the data better. It may 
be noted that in the case of SiC fibres, though the 
strength values arising out of the volume defect is 
concentrated in the region of high strength, both the 
groups contain strength values arising out of both 
volume and surface defects. Goda and Fukunage [2] 
justify the application of a bimodal Weibull distri- 
bution based on the fracture mode i.e., the volume 
of surface defect. However, it is clear from Fig. 2, 
that the strength values are dependent on flaw size 
rather than on the fracture mode. Application of 
the bimodal Weibull distribution requires the identifi- 
cation of flaws by fractographic analysis. As pointed 
out by Jakus et al. [10] the determination of the four 
Weibull parameters necessary to describe a bimodal 
concurrent flaw population is also not straightforward. 
To accurately analyse the data, samples that fail from 
one type of flaw must be included as censored data in 
the ranking of strengths of other type of flaw and 
vice versa. On the other hand, proposed distribution 
does not require the flaw source to be identified. This 
is especially useful for cases where the flaw identifi- 
cation is difficult. 

Fig. 4 shows a comparison of theoretically predicted 
strength values of SiC fibres with those of experimental 
ones, measured at the gauge lengths of 5mm and 
50mm. The theoretical values have been calculated 
from Equations 1 and 6 on the basis of parameters 
estimated at 10 mm gauge length (Table I). It can be 
seen from Fig, 4 that there is close agreement between 
the predicted values and the experimental data. Fig. 5 
shows a similar plot for A1203 fibres tested at gauge 
lengths of 0.5in. (12.7ram) and 5in. (127mm). 
Theoretical predictions are based on the parameters 
evaluated for a gauge length of 10 in. (254mm). Here 
again, the predicted values are in close agreement with 
the experimental data. 

The logarithms of the average strengths of SiC and 
A1203 fibres are shown in Figs 6a to b respectively. Full 
lines correspond to the average strength curves calcu- 
lated from Equation 9 on the basis of parameters esti- 
mated at gauge lengths of 10 mm and 10 in. respectively. 
As can be seen from the figures the predicted curve agrees 
with the experimental data points thereby proving the 
validity of Equation 6 in describing the strength data. 

Like the Weibull modulus rn, if we associate the 
parameters rn, and rn 2 with the scatter in strength 
data of the high and low strength groups of the distri- 
bution ion respectively, it can be seen from Table I, 
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TAB L E 1 Values of parameters of equation 6 obtained from failure analysis and the sum of squares 

Figure 3 Weibull plot for AI20 ~ fibres and the 
cumulative distribution curve estimated from 
Equation 6. Gauge length = 10in (254mm) 

Fibre type Gauge length S U S L S01 S02 m t m 2 Q Remarks 
(ram) (GPa) (GPa) (GPa) (GPa) 

SiC 10 16.0 0 2.0 4.5 2.88 4.66 0.99 Ref. [2] 
AI203 254 (I0 in.) 3.0 0 0.2 1.2 0.054 6.19 0.97 Ref. [17] 

tha t  the low values o f  m~ in bo th  the cases indicate  a 
larger  scat ter  in the lower s t rength  group.  This is 
consis tent  with the exper imenta l  obse rva t ions  as 
shown in Figs.  2 and  3. 

4.  C o n c l u s i o n s  
The tensile s t rength d a t a  o f  coreless sil icon carb ide  
and  a lumina  fibres have been ana lysed  in terms o f  a 
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new modif ied  Weibul l  d i s t r ibu t ion  funct ion using the 
weakes t - l ink  theory.  The  s t r eng th - l eng th  re la t ionship  
has also been derived.  The  specific conclus ions  tha t  
can be d rawn  from this s tudy are as follows 

(1) The  flaw d is t r ibu t ion  given by E q u a t i o n  6 can be 
used to descr ibe the s t rength d i s t r ibu t ion  in br i t t le  
fibres like coreless silicon carb ide  or  a lumina .  The  
function provides an upper  and  lower l imiting strength 

Figure 4 Predicted ( ) failure probability of 
SiC fibres at gauge lengths of 5 mm (o) and 
50 mm (x) compared with the experimental data 
points. 
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Figure 5 Predicted failure propability of  Al203 fibres at gauge 
lengths of  0.5 in. (12.7 ram) (e)  and 5 in. (127 mm) (O), compared 
with the experimental data points. 

and is consistent with the boundary conditions of the 
physical phenomena it represents. 

(2) The strength distribution and the average values 
at different gauge lengths, predicted from this function 
show close agreement with the experimental data 
points. 
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